Local a posteriori error estimates for time-dependent Hamilton-Jacobi equations

نویسندگان

  • Bernardo Cockburn
  • Ivan Merev
  • Jianliang Qian
چکیده

In this paper, we obtain the first local a posteriori error estimate for time-dependent Hamilton-Jacobi equations. Given an arbitrary domain Ω and a time T , the estimate gives an upper bound for the L∞-norm in Ω at time T of the difference between the viscosity solution u and any continuous function v in terms of the initial error in the domain of dependence and in terms of the (shifted) residual of v in the union of all the cones of dependence with vertices in Ω. The estimate holds for general Hamiltonians and any space dimension. It is thus an ideal tool for devising adaptive algorithms with rigorous error control for time-dependent Hamilton-Jacobi equations. This result is an extension to the global a posteriori error estimate obtained by S. Albert, B. Cockburn, D. French, and T. Peterson in A posteriori error estimates for general numerical methods for Hamilton-Jacobi equations. Part II: The time-dependent case, Finite Volumes for Complex Applications, vol. III, June 2002, pp. 17–24. Numerical experiments investigating the sharpness of the a posteriori error estimates are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A posteriori error estimates for general numerical methods for Hamilton-Jacobi equations. Part I: The steady state case

A new upper bound is provided for the L∞-norm of the difference between the viscosity solution of a model steady state Hamilton-Jacobi equation, u, and any given approximation, v. This upper bound is independent of the method used to compute the approximation v; it depends solely on the values that the residual takes on a subset of the domain which can be easily computed in terms of v. Numerica...

متن کامل

A posteriori error estimates for the effective Hamiltonian of dislocation dynamics

We study an implicit and discontinuous scheme for a non-local Hamilton-Jacobi equation modelling dislocation dynamics. For the evolution problem, we prove an a posteriori estimate of Crandall-Lions type for the error between continuous and discrete solutions. We deduce an a posteriori error estimate for the effective Hamiltonian associated to a stationary cell problem. In dimension one and unde...

متن کامل

Error estimation and adaptive discretization for the discrete stochastic Hamilton-Jacobi-Bellman equation

Generalizing an idea from deterministic optimal control, we construct a posteriori error estimates for the spatial discretization error of the stochastic dynamic programming method based on a discrete Hamilton–Jacobi–Bellman equation. These error estimates are shown to be efficient and reliable, furthermore, a priori bounds on the estimates depending on the regularity of the approximate solutio...

متن کامل

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

Error Bounds for Monotone Approximation Schemes for Hamilton-Jacobi-Bellman Equations

We obtain error bounds for monotone approximation schemes of Hamilton-Jacobi-Bellman equations. These bounds improve previous results of Krylov and the authors. The key step in the proof of these new estimates is the introduction of a switching system which allows the construction of approximate, (almost) smooth supersolutions for the Hamilton-Jacobi-Bellman equation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 82  شماره 

صفحات  -

تاریخ انتشار 2013